## **Supporting Information**

Combined Experimental and Computational Approach toward the

Structural Design of Borosilicate-Based Bioactive Glasses

Nicholas Stone-Weiss,<sup>1</sup> Henrik Bradtmüller,<sup>2</sup> Mariagrazia Fortino,<sup>3</sup> Marco

Bertani,<sup>3</sup> Randall E. Youngman,<sup>4</sup> Alfonso Pedone,<sup>3</sup> Hellmut Eckert,<sup>2,5,\*</sup> Ashutosh

Goel<sup>1,1</sup>

<sup>1</sup>Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States

<sup>2</sup>Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, D48149 Münster, Germany.

<sup>3</sup>Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via

G. Campi 103, 41125, Modena, Italy

<sup>4</sup>Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States

<sup>5</sup>São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador Saocarlense 400,

São Carlos, SP 13566-590, Brazil

<sup>\*</sup> Corresponding authors: Email: <u>eckert@ifsc.usp.br</u>; Ph: +55-16-3373-8775 (H. Eckert) Email: <u>ag1179@soe.rutgers.edu</u>; Ph: +1-848-333-1523 (A. Goel)



**S**2



\* XRD peaks associated with tetrasodium diphosphate crystals

**Figure S1.** X-ray diffraction patterns of PB, MB, and PA glass compositions, respectively. All samples shown, with the exception of PA1-P5, were used in this study due to their amorphous / visibly transparent nature. PA1-P5 displays an example of a glass which developed crystalline phases upon quenching, as was seen in all x = 5 PA glasses.







**Figure S2.** <sup>11</sup>B MAS NMR spectra of all Series "1" and "2" glasses in the perboric and metaboric regimes, in addition to Series "1" and "3" in the peralkaline regime. Spectra on the perboric, metaboric, and peralkaline glasses were collected at 16.4 T, 14.1 T, and 11.7 T, respectively.







Figure S3. <sup>31</sup>P MAS NMR spectra of Series "1" PB and MB samples and all PA samples.



**Figure S4.** Overall spectral range of <sup>11</sup>B MAS NMR spectra of PB3-P7 and MB3-P5 samples, which was used to estimate <sup>11</sup>B quadrupolar coupling constants, based on the spinning sideband pattern of the satellite transition.







Figure S5. <sup>29</sup>Si MAS NMR spectra of Series "1" and "2" samples.



**Figure S6.** T-Na (T=Si, B(III), B(IV), P) pair distribution functions of the glasses investigated. x is the content of P<sub>2</sub>O<sub>5</sub> in the glass.



**Figure S7.** T-Na coordination numbers (computed using a cutoff = 4.5 Å) as a function of P<sub>2</sub>O<sub>5</sub> content. The black line represents the coordination numbers for models in which sodium is homogeneously distributed.

| Si                | ngle Resonance Parameters                         | Perboric                                        | Metaboric                                    | Peralkaline                                  |  |
|-------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------|--|
|                   | Magnetic field (T) / Resonance<br>frequency (MHz) | 16.4 / 185.1                                    | 5.7 / 64.1                                   | 5.7 / 64.1                                   |  |
|                   | Spinning frequency (kHz)                          | 22.0                                            | 15.0                                         | 15.0                                         |  |
| <sup>23</sup> Na  | Pulse length ( $\mu$ s) / Tip angle               | 0.6 / (π/12)                                    | 0.8-1.2 / (π/6)                              | 0.8-1.2 / (π/6)                              |  |
|                   | Recycle delay (s)                                 | 2                                               | 0.25-0.5                                     | 0.25-0.5                                     |  |
|                   | Number of acquisitions                            | 200                                             | ≥2000                                        | ≥2000                                        |  |
|                   | Reference standard                                | NaCl (aq.) (0.0 ppm)                            | NaCl (7.2 ppm)                               | NaCl (7.2 ppm)                               |  |
|                   | Magnetic field (T) / Resonance<br>frequency (MHz) | 16.4 / 224.6                                    | 14.1 / 192.6                                 | 11.7 / 160.5 or 14.1 /<br>192.6              |  |
|                   | Spinning frequency (kHz)                          | 20.0                                            | 15.0                                         | 14.0 or 15.0                                 |  |
| $^{11}\mathbf{B}$ | Pulse length (µs) / (Tip Angle)                   | 0.6 / (π/12)                                    | 0.5-1.0 / (π/6)                              | 0.4-1.0 / (π/6)                              |  |
|                   | Recycle delay (s)                                 | 2                                               | 1-5                                          | 1-15                                         |  |
|                   | Number of acquisitions                            | 200                                             | ≥400                                         | ≥400                                         |  |
|                   | Reference standard                                | H <sub>3</sub> BO <sub>3</sub> (aq.) (19.6 ppm) | BPO <sub>4</sub> (-3.5 ppm)                  | BPO <sub>4</sub> (-3.5 ppm)                  |  |
|                   | Magnetic field (T) / Resonance<br>frequency (MHz) | 16.4 / 283.3                                    | 5.7 / 98.1                                   | 5.7 / 98.1                                   |  |
|                   | Spinning frequency (kHz)                          | 20.0                                            | 12.0                                         | 12.0                                         |  |
| <sup>31</sup> P   | Pulse length (µs) / (Tip angle)                   | 1.0 / (π/6)                                     | 4.0-5.2 / (π/2)                              | 4.0-5.2 / (π/2)                              |  |
|                   | Recycle delay (s)                                 | 45                                              | 90-150                                       | 90-150                                       |  |
|                   | Number of acquisitions                            | 160-800                                         | 80                                           | 80                                           |  |
|                   | Reference standard                                | 85 % H <sub>3</sub> PO <sub>4</sub> (0.0 ppm)   | BPO <sub>4</sub> (-29.3 ppm)                 | BPO <sub>4</sub> (-29.3 ppm)                 |  |
|                   | Magnetic Field (T) /<br>Resonance frequency (MHz) | 11.7 / 99.3                                     | 5.7 / 48.2                                   | 5.7 / 48.2                                   |  |
|                   | Spinning frequency (kHz)                          | 6.0                                             | 5.0                                          | 5.0                                          |  |
| <sup>29</sup> Si  | Pulse length ( $\mu$ s) / (Tip angle)             | 1.6 / (π/6)                                     | 5.0 / (π/2)                                  | 5.0 / (π/2)                                  |  |
|                   | Recycle delay (s)                                 | 300                                             | 150                                          | 150                                          |  |
|                   | Number of acquisitions                            | 300-800                                         | 150                                          | 150                                          |  |
|                   | Reference standard                                | Tetramethylsilane (0.0 ppm)                     | CaSi <sub>2</sub> O <sub>5</sub> (-71.3 ppm) | CaSi <sub>2</sub> O <sub>5</sub> (-71.3 ppm) |  |

Table S1. Summary of measurement conditions for all samples and nuclei studied by MAS NMR.

| Experimental Parameters of Double Resonance Experiments |                                              |         |  |  |  |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------|---------|--|--|--|--|--|--|--|--|
|                                                         | $v_{nut.}$ , observed (kHz)                  | 71.0    |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , non-observed (kHz)              | 161.0   |  |  |  |  |  |  |  |  |
|                                                         | Spinning frequency (kHz)                     | 15.0    |  |  |  |  |  |  |  |  |
| ${}^{11}B{}^{31}P{}$                                    | $\pi$ -Pulse length, observed ( $\mu$ s)     | 5.6-6.0 |  |  |  |  |  |  |  |  |
|                                                         | $\pi$ -Pulse length, non-observed ( $\mu$ s) | 3.1     |  |  |  |  |  |  |  |  |
|                                                         | Recycle delay (s)                            | 1       |  |  |  |  |  |  |  |  |
|                                                         | Number of acquisitions (per point)           | ≥112    |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , observed (kHz)                  | 31.3    |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , non-observed (kHz)              | 62.5    |  |  |  |  |  |  |  |  |
|                                                         | Spinning frequency (kHz)                     | 11.0    |  |  |  |  |  |  |  |  |
| $^{23}Na{}^{31}P{}$                                     | $\pi$ -Pulse length, observed ( $\mu$ s)     | 6.0     |  |  |  |  |  |  |  |  |
|                                                         | $\pi$ -Pulse length, non-observed ( $\mu$ s) | 6.4     |  |  |  |  |  |  |  |  |
|                                                         | Recycle delay (s)                            | 0.5     |  |  |  |  |  |  |  |  |
|                                                         | Number of acquisitions (per point)           | 512     |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , observed (kHz)                  | 62.5    |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , non-observed (kHz)              | 31.3    |  |  |  |  |  |  |  |  |
|                                                         | Spinning frequency (kHz)                     | 11.0    |  |  |  |  |  |  |  |  |
| $^{31}P{^{23}Na}$                                       | $\pi$ -Pulse length, observed ( $\mu$ s)     | 6.4     |  |  |  |  |  |  |  |  |
|                                                         | $\pi$ -Pulse length, non-observed ( $\mu$ s) | 6.0     |  |  |  |  |  |  |  |  |
|                                                         | Recycle delay (s)                            | 40-100  |  |  |  |  |  |  |  |  |
|                                                         | Number of acquisitions (per point)           | 256     |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , observed (kHz)                  | 161.0   |  |  |  |  |  |  |  |  |
|                                                         | $v_{nut.}$ , non-observed (kHz)              | 71.0    |  |  |  |  |  |  |  |  |
|                                                         | Spinning frequency (kHz)                     | 15.0    |  |  |  |  |  |  |  |  |
| ${}^{31}P{1^1B}$                                        | $\pi$ -Pulse length, observed ( $\mu$ s)     | 3.1     |  |  |  |  |  |  |  |  |
|                                                         | $\pi$ -Pulse length, non-observed ( $\mu$ s) | 22.0    |  |  |  |  |  |  |  |  |
|                                                         | Recycle delay (s)                            | 90      |  |  |  |  |  |  |  |  |
|                                                         | Number of acquisitions (per point)           | 192     |  |  |  |  |  |  |  |  |

\*7.75 µs used for B(III) and 11.25 µs for B(IV)

| Glass                                                             | B   | Si  | Р   | 0    | Na  | # atoms |
|-------------------------------------------------------------------|-----|-----|-----|------|-----|---------|
| PB0                                                               | 600 | 450 | -   | 2050 | 500 | 3600    |
| PB2-P1                                                            | 590 | 440 | 20  | 2060 | 490 | 3600    |
| PB2-P3                                                            | 580 | 430 | 60  | 2120 | 480 | 3670    |
| PB2-P5                                                            | 570 | 420 | 100 | 2180 | 470 | 3740    |
| MB0                                                               | 500 | 500 | -   | 2000 | 500 | 3500    |
| MB2-P1                                                            | 490 | 500 | 20  | 2030 | 490 | 3530    |
| MB2-P3                                                            | 480 | 490 | 60  | 2090 | 480 | 3600    |
| MB2-P5                                                            | 470 | 480 | 100 | 2150 | 470 | 3670    |
| PA0                                                               | 400 | 550 | -   | 1950 | 500 | 3400    |
| PA2-P1                                                            | 390 | 540 | 20  | 1910 | 490 | 3350    |
| PA2-P3                                                            | 380 | 530 | 60  | 2020 | 480 | 3470    |
| $55 \text{ Na}_2\text{O} - 45 \text{ P}_2\text{O}_5$              | -   | -   | 72  | 224  | 88  | 384     |
| 40 Na <sub>2</sub> O - 18 B2O3 - 42 P <sub>2</sub> O <sub>5</sub> | 27  | -   | 63  | 228  | 60  | 378     |

Table S2. Number of atoms in the simulation cells of the investigated glasses.

|                  |                                               | Buckingham         |                          | Ref.      |
|------------------|-----------------------------------------------|--------------------|--------------------------|-----------|
| Pairs            | A (eV)                                        | ρ (Å)              | C (eV Å <sup>6</sup> )   |           |
| $O_s$ - $O_s$    | 22764.30                                      | 0.1490             | 27.88                    | 1         |
| $Si-O_s$         | 1283.91                                       | 0.32052            | 10.661580                | 1         |
| $Na-O_s$         | 56465.345                                     | 0.193931           | 0.000000                 | 2         |
| B-O <sub>s</sub> | 511.0                                         | 0.3310             | 0.0                      | this work |
| P-O <sub>s</sub> | 1120.09                                       | 0.33477            | 0.0                      | 3         |
|                  | Th                                            | ree-body potential |                          |           |
|                  | <b>k</b> <sub>b</sub> (eV rad <sup>-2</sup> ) | $\theta_0$ (deg)   | ρ (Å)                    | Ref.      |
| O-Si-O           | 100.0                                         | 109.47             | 1.0                      | 3         |
| <i>O-P-O</i>     | 50.0                                          | 109.47             | 1.0                      | 3         |
|                  | Со                                            | re-shell potential |                          |           |
|                  | k <sub>s</sub> (eV Å <sup>-2</sup> )          | Y(e)               | m <sub>shell</sub> (uma) |           |
| $O_c$ - $O_s$    | 74.92                                         | -2.8482            | 3.0                      |           |

Table S3. Shell model interatomic potential parameters used in this work.

- Sanders, M. J.; Leslie, M.; Catlow, C. R. A. Interatomic Potentials for SiO<sub>2</sub>. J. Chem. Soc. Chem. Commun. 1984, No. 19, 1271–1273.
- (2) Tilocca, A.; De Leeuw, N. H.; Cormack, A. N. Shell-Model Molecular Dynamics Calculations of Modified Silicate Glasses. *Phys. Rev. B Condens. Matter* **2006**, *73* (10), 1–14.
- (3) Tilocca, A.; Cormack, A. N.; De Leeuw, N. H. The Structure of Bioactive Silicate Glasses: New Insight from Molecular Dynamics Simulations. *Chem. Mater.* 2007, *19* (1), 95–103.

| <u> </u>      |      | B(III                             | ) Ring                  |     | B(III) Non-Ring |                                  |                         |     | B(IV)-I |                                   | B(IV)-II |                             |             |
|---------------|------|-----------------------------------|-------------------------|-----|-----------------|----------------------------------|-------------------------|-----|---------|-----------------------------------|----------|-----------------------------|-------------|
| Sample<br>ID  | f(%) | $\delta_{\rm CS}^{\rm iso}$ (ppm) | C <sub>Q</sub><br>(MHz) | η   | f(%)            | $\delta_{\rm CS}^{ m iso}$ (ppm) | C <sub>Q</sub><br>(MHz) | η   | f(%)    | $\delta_{\rm CS}^{\rm iso}$ (ppm) | f (%)    | δcs <sup>iso</sup><br>(ppm) | $N_4$       |
| PB0           | 27.8 | 18.5                              | 2.7                     | 0.3 | 9.3             | 16.2                             | 2.6                     | 0.3 | 59.3    | -0.1                              | 3.6      | -2.1                        | 62.9 [59.5] |
| PB1-P1        | 25.7 | 18.2                              | 2.7                     | 0.3 | 9.5             | 16.1                             | 2.6                     | 0.3 | 60.2    | -0.2                              | 4.6      | -2.2                        | 64.8        |
| PB1-P3        | 28.2 | 18.1                              | 2.7                     | 0.3 | 10.1            | 15.8                             | 2.6                     | 0.3 | 55.3    | -0.2                              | 6.4      | -2.2                        | 61.7        |
| PB1-P5        | 29.9 | 18.0                              | 2.7                     | 0.3 | 11.3            | 15.7                             | 2.6                     | 0.3 | 47.4    | -0.1                              | 11.4     | -2.1                        | 58.8        |
| PB2-P1        | 26.2 | 18.4                              | 2.7                     | 0.3 | 10.3            | 16.4                             | 2.7                     | 0.3 | 60.1    | -0.1                              | 3.4      | -2.1                        | 63.5 [60.5] |
| PB2-P3        | 28.6 | 18.1                              | 2.7                     | 0.3 | 9.3             | 16.1                             | 2.6                     | 0.3 | 54.7    | -0.1                              | 7.4      | -2.1                        | 62.1 [58.6] |
| PB2-P5        | 28.7 | 18.1                              | 2.7                     | 0.3 | 12.2            | 16.1                             | 2.6                     | 0.3 | 49.9    | -0.1                              | 9.2      | -2.1                        | 59.1 [54.6] |
| PB3-P1        | 27.0 | 18.3                              | 2.7                     | 0.3 | 9.6             | 16.3                             | 2.6                     | 0.3 | 58.5    | -0.1                              | 4.9      | -2.1                        | 63.4        |
| PB3-P4        | 29.4 | 18.2                              | 2.7                     | 0.3 | 10.6            | 16.1                             | 2.6                     | 0.3 | 53.8    | -0.1                              | 6.2      | -2.2                        | 60.0        |
| PB3-P7        | 31.2 | 18.0                              | 2.7                     | 0.3 | 12.4            | 16.0                             | 2.6                     | 0.3 | 48.4    | -0.1                              | 8.0      | -2.2                        | 56.4 [53.8] |
| MB0           | 25.1 | 17.7                              | 2.6                     | 0.3 | 5.9             | 14.6                             | 2.5                     | 0.5 | 62.4    | -0.5                              | 6.6      | -2.4                        | 67.2 [61.7] |
| MB1-P1        | 23.6 | 17.7                              | 2.6                     | 0.3 | 6.5             | 14.6                             | 2.5                     | 0.5 | 61.9    | -0.5                              | 8.0      | -2.4                        | 69.9        |
| MB1-P3        | 26.3 | 17.5                              | 2.6                     | 0.4 | 5.6             | 14.1                             | 2.6                     | 0.4 | 56.9    | -0.6                              | 11.2     | -2.4                        | 68.1        |
| MB1-P4        | 26.8 | 17.4                              | 2.6                     | 0.3 | 7.7             | 14.0                             | 2.5                     | 0.5 | 50.6    | -0.6                              | 14.9     | -2.4                        | 65.5        |
| MB2-P1        | 25.8 | 17.6                              | 2.6                     | 0.3 | 6.7             | 14.6                             | 2.6                     | 0.5 | 62.4    | -0.6                              | 5.1      | -2.5                        | 67.5 [63.4] |
| MB2-P3        | 25.5 | 17.4                              | 2.6                     | 0.3 | 7.3             | 14.8                             | 2.6                     | 0.5 | 59.6    | -0.7                              | 7.6      | -2.6                        | 67.2 [60.9] |
| MB2-P5        | 26.1 | 17.3                              | 2.6                     | 0.3 | 8.4             | 14.1                             | 2.5                     | 0.5 | 54.6    | -0.7                              | 10.9     | -2.6                        | 65.5 [60.3] |
| MB3-P1        | 23.1 | 17.5                              | 2.6                     | 0.3 | 9.3             | 15.2                             | 2.6                     | 0.5 | 62.6    | -0.9                              | 5.0      | -2.8                        | 67.6        |
| MB3-P3        | 23.0 | 17.4                              | 2.6                     | 0.3 | 10.0            | 15.3                             | 2.6                     | 0.5 | 59.6    | -0.9                              | 7.4      | -2.8                        | 67.0        |
| <b>MB3-P5</b> | 26.6 | 17.2                              | 2.6                     | 0.3 | 9.4             | 14.2                             | 2.4                     | 0.5 | 56.0    | -0.9                              | 8.0      | -2.9                        | 64.0        |
| PA0           | 21.7 | 18.2                              | 2.6                     | 0.4 | 6.4             | 15.2                             | 2.6                     | 0.4 | 60.8    | -0.1                              | 11.1     | -1.9                        | 71.0 [67.2] |
| PA1-P1        | 22.5 | 18.0                              | 2.5                     | 0.4 | 8.9             | 11.4                             | 2.5                     | 0.5 | 62.1    | -0.2                              | 6.4      | -1.8                        | 68.5        |
| PA1-P3        | 22.0 | 18.0                              | 2.5                     | 0.4 | 10.1            | 11.4                             | 2.5                     | 0.5 | 59.3    | -0.2                              | 8.6      | -1.8                        | 67.9        |
| PA2-P1        | 21.2 | 18.1                              | 2.5                     | 0.4 | 6.5             | 14.4                             | 2.6                     | 0.4 | 58.0    | -0.1                              | 14.3     | -1.8                        | 71.4 [58.9] |
| PA2-P3        | 21.9 | 18.0                              | 2.6                     | 0.4 | 5.5             | 14.4                             | 2.6                     | 0.4 | 57.7    | -0.3                              | 14.9     | -2.1                        | 71.9 [66.6] |
| PA3-P1        | 24.6 | 18.4                              | 2.5                     | 0.4 | 8.2             | 10.0                             | 2.4                     | 0.5 | 62.6    | 0.0                               | 4.6      | -1.7                        | 67.2        |
| PA3-P3        | 23.5 | 18.2                              | 2.5                     | 0.4 | 9.1             | 10.3                             | 2.4                     | 0.5 | 61.7    | -0.2                              | 5.8      | -1.8                        | 67.4        |

**Table S4.** Fitting parameters of <sup>11</sup>B MAS NMR in the studied glasses, including fraction of each species  $f(\pm 1.0\%)$ , isotropic chemical shift,  $\delta_{CS}^{iso}$  (± 0.5 ppm), quadrupolar coupling constant,  $C_Q$  (± 0.2 MHz),  $\eta_Q$  (± 0.05), and overall  $N_4$  fractions (± 1 %) where  $N_4$  as simulated from MD models are displayed in brackets.

| Sample ID                      |                                                     | <sup>31</sup> P MAS NMR |        |        |        |        |        |        |        |             |  |  |
|--------------------------------|-----------------------------------------------------|-------------------------|--------|--------|--------|--------|--------|--------|--------|-------------|--|--|
|                                |                                                     | PB1-P1                  | PB1-P3 | PB1-P5 | PB2-P1 | PB2-P3 | PB2-P5 | PB3-P1 | PB3-P4 | PB3-P7*     |  |  |
| P <sup>0</sup>                 | f(%)                                                | 2.0                     | 0.6    | 0.0    | 3.3    | 0.9    | 0.0    | 2.7    | 0.5    | 0.0/0.0     |  |  |
|                                | $\delta_{\rm CS}^{\rm iso}({\rm ppm})$              | 16.0                    | 16.0   |        | 16.3   | 15.9   |        | 16.0   | 16.0   |             |  |  |
|                                | FWHM<br>(ppm)                                       | 3.9                     | 4.6    |        | 3.9    | 4.6    |        | 3.9    | 3.9    |             |  |  |
|                                | f (%)                                               | 11.3                    | 6.2    | 4.3    | 12.0   | 7.8    | 4.7    | 12.0   | 10.2   | 3.2/4.2     |  |  |
| $\mathbf{P}^{1}_{1\mathbf{P}}$ | $\delta_{\rm CS}^{ m iso}( m ppm)$                  | 6.6                     | 6.6    | 6.1    | 6.9    | 6.6    | 6.1    | 6.6    | 6.2    | 6.2/4.6     |  |  |
| - 15                           | FWHM<br>(ppm)                                       | 4.0                     | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 3.9/3.8     |  |  |
|                                | f (%)                                               | 59.9                    | 45.5   | 32.3   | 60.5   | 50.8   | 33.2   | 60.8   | 45.0   | 25.7/21.6   |  |  |
| $\mathbf{P}^{1}_{1\mathbf{P}}$ | $\delta_{\mathrm{CS}^{\mathrm{iso}}}(\mathrm{ppm})$ | 3.4                     | 3.1    | 2.6    | 3.6    | 3.2    | 2.6    | 3.5    | 2.8    | 2.3/1.6     |  |  |
| - 11                           | FWHM<br>(ppm)                                       | 5.8                     | 5.8    | 5.8    | 5.8    | 5.8    | 5.8    | 5.7    | 5.7    | 5.8/5.7     |  |  |
|                                | f (%)                                               | 8.7                     | 11.7   | 12.4   | 9.1    | 12.0   | 12.1   | 9.7    | 12.4   | 16.6/32.7   |  |  |
| P <sup>2</sup> <sub>2B</sub>   | $\delta_{\rm CS}^{ m iso}( m ppm)$                  | -2.1                    | -2.1   | -2.1   | -2.1   | -2.1   | -2.1   | -2.1   | -2.7   | -2.7/-4.6   |  |  |
|                                | FWHM<br>(ppm)                                       | 5.1                     | 5.1    | 5.1    | 5.1    | 5.1    | 5.1    | 5.1    | 5.1    | 5.1/8.0     |  |  |
|                                | f(%)                                                | 15.1                    | 26.5   | 36.5   | 12.8   | 23.4   | 36.1   | 12.7   | 25.6   | 40.4/26.8   |  |  |
| P <sup>2</sup> 1B 1B           | $\delta_{\rm CS}^{ m iso}({ m ppm})$                | -6.4                    | -6.2   | -6.3   | -6.6   | -6.5   | -6.3   | -6.6   | -6.6   | -6.8/7.4    |  |  |
| • 1B,1P                        | FWHM<br>(ppm)                                       | 6.3                     | 6.3    | 6.4    | 6.3    | 6.4    | 6.4    | 6.3    | 6.3    | 6.4/7.1     |  |  |
|                                | f (%)                                               | 3.1                     | 8.6    | 12.9   | 2.2    | 5.1    | 12.4   | 2.1    | 6.3    | 12.5/12.0   |  |  |
| P <sup>3</sup> 2P 1P           | $\delta \mathrm{cs}^{\mathrm{iso}}(\mathrm{ppm})$   | -12.4                   | -11.5  | -11.7  | -12.4  | -12.4  | -11.7  | -12.4  | -12.4  | -12.4/-12.1 |  |  |
| - 20,11                        | FWHM<br>(ppm)                                       | 6.4                     | 6.3    | 6.4    | 6.4    | 6.4    | 6.4    | 6.4    | 6.4    | 6.4/6.4     |  |  |
|                                | <i>f</i> (%)                                        | 0.0                     | 0.8    | 1.7    | 0.0    | 0.0    | 1.4    | 0.0    | 0.0    | 1.5/2.8     |  |  |
| $\mathbf{P}^2_{\mathrm{op}}$   | $\delta$ cs <sup>iso</sup> (ppm)                    |                         | -18.7  | -18.7  |        |        | -18.7  |        |        | -18.7/-17.5 |  |  |
| I 2P                           | FWHM<br>(ppm)                                       |                         | 5.9    | 5.9    |        |        | 5.9    |        |        | 5.9/6.2     |  |  |
| <m<sub>B(P)<br/>neigh</m<sub>  | > Av. # of B<br>bors per P                          | 0.50                    | 0.73   | 0.91   | 0.47   | 0.65   | 0.90   | 0.48   | 0.73   | 1.02/1.20   |  |  |
|                                | <n></n>                                             | 1.28                    | 1.56   | 1.77   | 1.23   | 1.45   | 1.74   | 1.24   | 1.50   | 1.83/1.86   |  |  |

**Table S5.** Fitting parameters of <sup>31</sup>P MAS NMR in all studied glasses, including species designations, fraction of each species  $f(\pm 1.0 \text{ \%})$ , isotropic chemical shift,  $\delta_{CS}^{iso}(\pm 0.2 \text{ ppm})$  and FWHM ( $\pm 0.1 \text{ ppm}$ ). Average number of B next nearest neighbors around P and total average P coordination are also displayed.

\*two separate sets of measurements with fits constrained by refocused INADEQUATE experiments

| Sample ID                             |                                                               | <sup>31</sup> P MAS NMR |        |        |        |        |        |        |        |        |  |
|---------------------------------------|---------------------------------------------------------------|-------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|                                       |                                                               | MB1-P1                  | MB1-P3 | MB1-P4 | MB2-P1 | MB2-P3 | MB2-P5 | MB3-P1 | MB3-P3 | MB3-P5 |  |
|                                       | <i>f</i> (%)                                                  | 3.2                     | 1.3    | 1.0    | 3.7    | 1.4    | 1.2    | 3.7    | 1.7    | 1.1    |  |
| <b>P</b> <sup>0</sup>                 | $\delta \mathrm{cs}^{\mathrm{iso}}\left(\mathrm{ppm} ight)$   | 16.4                    | 16.3   | 16.3   | 16.4   | 16.3   | 15.6   | 16.4   | 16.3   | 15.8   |  |
|                                       | FWHM<br>(ppm)                                                 | 4.1                     | 4.2    | 4.2    | 4.1    | 4.2    | 4.9    | 4.1    | 4.2    | 4.2    |  |
|                                       | f (%)                                                         | 29.6                    | 20.4   | 18.1   | 31.6   | 22.5   | 14.5   | 32.5   | 23.4   | 15.2   |  |
| $\mathbf{P}^{1}_{1\mathbf{R}}$        | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | 6.0                     | 6.0    | 5.9    | 6.0    | 6.0    | 6.2    | 6.0    | 6.0    | 6.2    |  |
| - 10                                  | FWHM<br>(ppm)                                                 | 4.5                     | 4.5    | 4.5    | 4.5    | 4.5    | 3.9    | 4.5    | 4.5    | 3.9    |  |
|                                       | f (%)                                                         | 39.7                    | 35.6   | 34.5   | 40.1   | 37.1   | 36.6   | 39.5   | 37.6   | 37.4   |  |
| $\mathbf{P}^{1}_{1\mathbf{P}}$        | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | 2.9                     | 2.9    | 2.9    | 2.9    | 2.9    | 2.9    | 2.9    | 2.9    | 2.9    |  |
| I IF                                  | FWHM<br>(ppm)                                                 | 4.6                     | 4.6    | 4.6    | 4.6    | 4.6    | 4.6    | 4.6    | 4.6    | 4.6    |  |
|                                       | f (%)                                                         | 10.3                    | 13.1   | 13.4   | 9.0    | 12.4   | 14.1   | 9.5    | 12.5   | 13.5   |  |
| P <sup>2</sup> <sub>2B</sub>          | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | -0.9                    | -0.9   | -0.5   | -1.1   | -0.9   | -0.9   | -0.8   | -0.9   | -1.0   |  |
|                                       | FWHM<br>(ppm)                                                 | 5.0                     | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    |  |
|                                       | f (%)                                                         | 12.8                    | 21.4   | 22.9   | 12.0   | 19.5   | 23.8   | 11.8   | 18.4   | 23.7   |  |
| <b>P<sup>2</sup></b> <sub>1P 1P</sub> | $\delta \mathrm{cs}^\mathrm{iso}\left(\mathrm{ppm} ight)$     | -5.8                    | -5.8   | -5.6   | -5.6   | -5.8   | -5.8   | -5.8   | -5.8   | -5.8   |  |
| - 16,11                               | FWHM<br>(ppm)                                                 | 6.5                     | 6.5    | 6.5    | 6.5    | 6.5    | 6.4    | 6.5    | 6.5    | 6.5    |  |
|                                       | f (%)                                                         | 4.4                     | 8.2    | 10.1   | 3.6    | 7.1    | 9.8    | 3.0    | 6.4    | 9.2    |  |
| P <sup>3</sup> <sub>2B 1P</sub>       | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | -10.9                   | -10.9  | -10.9  | -10.9  | -10.9  | -10.9  | -10.9  | -10.9  | -10.9  |  |
| - 20,11                               | FWHM<br>(ppm)                                                 | 6.5                     | 6.5    | 6.5    | 6.5    | 6.5    | 6.5    | 6.5    | 6.5    | 6.5    |  |
|                                       | <i>f</i> (%)                                                  | 0.0                     | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |  |
| $\mathbf{P}^{2}_{2\mathbf{P}}$        | $\delta_{\mathrm{CS}}^{\mathrm{iso}}\left(\mathrm{ppm} ight)$ |                         |        |        |        |        |        |        |        |        |  |
| - 21                                  | FWHM                                                          |                         |        |        |        |        |        |        |        |        |  |
|                                       | (ppm)                                                         | 0.72                    | 0.04   | 0.00   | 0.00   | 0.01   | 0.07   | 0.00   | 0.00   | 0.04   |  |
| <                                     | $m_{\rm B}({\rm P})>$                                         | 0.72                    | 0.84   | 0.88   | 0.69   | 0.81   | 0.86   | 0.69   | 0.80   | 0.84   |  |
|                                       | < <i>n</i> >                                                  | 1.29                    | 1.50   | 1.56   | 1.25   | 1.45   | 1.56   | 1.24   | 1.42   | 1.55   |  |

|                                |                                                               | <sup>31</sup> P MAS NMR |        |        |        |        |        |  |  |  |  |
|--------------------------------|---------------------------------------------------------------|-------------------------|--------|--------|--------|--------|--------|--|--|--|--|
| Sa                             | mple ID                                                       | PA1-P1                  | PA1-P3 | PA2-P1 | PA2-P3 | PA3-P1 | PA3-P3 |  |  |  |  |
|                                | f(%)                                                          | 4.7                     | 7.4    | 4.8    | 4.7    | 5.5    | 3.2    |  |  |  |  |
| <b>P</b> <sup>0</sup>          | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | 16.0                    | 14.8   | 16.4   | 15.3   | 16.5   | 16.3   |  |  |  |  |
|                                | FWHM<br>(ppm)                                                 | 4.1                     | 3.8    | 4.5    | 4.5    | 4.6    | 4.5    |  |  |  |  |
|                                | f (%)                                                         | 27.6                    | 16.5   | 26.8   | 21.1   | 29.0   | 23.1   |  |  |  |  |
| $\mathbf{P}^{1}_{1B}$          | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | 6.4                     | 6.2    | 6.3    | 5.8    | 6.4    | 6.2    |  |  |  |  |
| _ 10                           | FWHM<br>(ppm)                                                 | 4.6                     | 4.3    | 4.6    | 4.6    | 4.6    | 4.6    |  |  |  |  |
|                                | f (%)                                                         | 45.5                    | 46.7   | 42.7   | 40.6   | 42.2   | 43.1   |  |  |  |  |
| $\mathbf{P}^{1}_{1\mathbf{P}}$ | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | 3.1                     | 2.8    | 3.1    | 2.9    | 3.1    | 3.1    |  |  |  |  |
|                                | FWHM<br>(ppm)                                                 | 4.6                     | 4.2    | 4.6    | 4.6    | 4.6    | 4.6    |  |  |  |  |
|                                | f (%)                                                         | 8.0                     | 7.9    | 11.1   | 12.2   | 9.9    | 11.7   |  |  |  |  |
| $\mathbf{P}^{2}_{2\mathbf{B}}$ | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | -1.0                    | -1.2   | -0.5   | -0.3   | -0.7   | -0.5   |  |  |  |  |
| A 20                           | FWHM<br>(ppm)                                                 | 5.0                     | 5.0    | 5.0    | 5.0    | 5.0    | 5.0    |  |  |  |  |
|                                | f (%)                                                         | 10.8                    | 13.6   | 10.9   | 14.4   | 9.6    | 13.2   |  |  |  |  |
| $P^{2}_{1B \ 1P}$              | $\delta_{\mathrm{CS}}^{\mathrm{iso}}\left(\mathrm{ppm} ight)$ | -5.8                    | -5.8   | -5.8   | -5.8   | -5.8   | -5.8   |  |  |  |  |
| - 10,11                        | FWHM<br>(ppm)                                                 | 6.5                     | 6.5    | 6.5    | 6.5    | 6.5    | 6.5    |  |  |  |  |
|                                | f (%)                                                         | 3.4                     | 7.9    | 3.6    | 7.1    | 3.8    | 5.7    |  |  |  |  |
| $P^{3}_{2B 1P}$                | $\delta_{\rm CS}^{ m iso}( m ppm)$                            | -10.9                   | -10.9  | -10.9  | -10.9  | -10.9  | -10.9  |  |  |  |  |
|                                | FWHM<br>(ppm)                                                 | 6.5                     | 6.5    | 6.5    | 6.5    | 6.5    | 6.5    |  |  |  |  |
|                                | f (%)                                                         | 0.0                     | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |  |  |  |  |
| $\mathbf{P}^{2}_{2\mathbf{P}}$ | $\delta cs^{iso} (ppm)$                                       |                         |        |        |        |        |        |  |  |  |  |
| - 21                           | FWHM<br>(ppm)                                                 |                         |        |        |        |        |        |  |  |  |  |
| 4                              | $n_{\rm B}(\mathbf{P})>$                                      | 0.61                    | 0.62   | 0.67   | 0.74   | 0.66   | 0.71   |  |  |  |  |
|                                | <n></n>                                                       | 1.21                    | 1.30   | 1.24   | 1.39   | 1.21   | 1.33   |  |  |  |  |