## **Supporting Information**

## Network Former Mixing (NFM) Effects in Alkali Germanotellurite Glasses.

Henrik Bradtmüller<sup>1</sup>, Ana Candida Martins Rodrigues<sup>2</sup>, Hellmut Eckert<sup>1,3,a,b</sup>

<sup>1</sup>Institut für Physikalische Chemie, Westfälische Wilhelms-Universität, Corrensstr. 30, D-48149, Münster, Germany

<sup>2</sup>Universidade Federal de São Carlos, Departamento de Engenharia de Materiais, CP 676, 13565-905, São Carlos, SP, Brasil

<sup>3</sup>Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense 400 São Carlos, S.P., 13566-590, Brasil

\* Corresponding author: Email <sup>a</sup>: eckert@ifsc.usp.br; Ph: +55-16-3373-8775 Email <sup>b</sup>: <u>eckerth@uni-muenster.de</u>

**Table S1** – Nominal chemical compositions (nom.) of the  $(A_2O)_{0.3}[(TeO_2)_x(GeO_2)_{1-x}]_{0.7}$  (A = Li, Na) glass samples and those measured by ICP-OES, XRF and EDS. TeO<sub>2</sub> and GeO<sub>2</sub> contents determined by XRF and EDS for the A = Li glasses were normalized assuming the respective Li<sub>2</sub>O contents from ICP-OES or the nominal ones when the latter method was not applied. All the values are given in mass percent (m%). The errors are 0.5, 1 and 2 m% for ICP-OES, XRF and EDS respectively.

| Composition |                | m%(A <sub>2</sub> O) |      |      |         | m%(TeO <sub>2</sub> ) |      |      | m%(GeO <sub>2</sub> ) |      |      |
|-------------|----------------|----------------------|------|------|---------|-----------------------|------|------|-----------------------|------|------|
|             |                | nom.                 | XRF  | EDS  | ICP-OES | nom.                  | XRF  | EDS  | Nom.                  | XRF  | EDS  |
| A = Li      | x = 0.0        | 10.9                 | -    | -    | 11.1    | 0.0                   | 0.0  | 0.0  | 89.1                  | 90.0 | 90.0 |
|             | x = 0.2        | 10.0                 | -    | -    | n.A.    | 24.9                  | 23.4 | 25.1 | 65.2                  | 67.6 | 65.8 |
|             | x = 0.4        | 9.2                  | -    | -    | 9.7     | 45.8                  | 44.4 | 46.7 | 45.0                  | 46.8 | 44.4 |
|             | <i>x</i> = 0.5 | 8.8                  | -    | -    | n.A.    | 55.1                  | 54.4 | 57.1 | 36.1                  | 37.5 | 34.8 |
|             | <i>x</i> = 0.6 | 8.5                  | -    | -    | 7.9     | 63.7                  | 63.8 | 65.1 | 27.8                  | 28.8 | 27.5 |
|             | x = 0.8        | 7.9                  | -    | -    | n.A.    | 79.1                  | 78.9 | 79.5 | 13.0                  | 13.7 | 13.1 |
|             | <i>x</i> = 1.0 | 7.4                  | -    | -    | 7.1     | 92.6                  | 93.3 | 93.3 | 0.0                   | 0.0  | 0.0  |
| A = Na      | x = 0.0        | 20.2                 | n.A. | 14.6 | -       | 0.0                   | n.A. | 0.0  | 79.8                  | n.A. | 85.4 |
|             | x = 0.2        | 18.7                 | 13.4 | 15.3 | -       | 22.4                  | 22.0 | 22.7 | 58.9                  | 64.6 | 62.1 |
|             | x = 0.4        | 17.3                 | 14.1 | 14.2 | -       | 41.7                  | 43.9 | 42.4 | 41.0                  | 42.0 | 43.4 |
|             | <i>x</i> = 0.5 | 16.7                 | 15.1 | n.A. | -       | 50.3                  | 46.7 | n.A. | 33.0                  | 38.2 | n.A. |
|             | <i>x</i> = 0.6 | 16.2                 | 13.5 | 12.2 | -       | 58.3                  | 61.0 | 62.2 | 25.5                  | 25.5 | 25.7 |
|             | x = 0.8        | 15.2                 | 11.6 | 16.2 | -       | 72.9                  | 78.6 | 74.2 | 11.9                  | 9.8  | 9.6  |
|             | <i>x</i> = 1.0 | 14.3                 | 12.3 | 12.4 | -       | 85.7                  | 87.7 | 87.5 | 0.0                   | 0.0  | 0.0  |



Figure S1: Powder X-ray diffractograms of (Li<sub>2</sub>O)<sub>0.3</sub>[(TeO<sub>2</sub>)<sub>x</sub>(GeO<sub>2</sub>)<sub>1-x</sub>]<sub>0.7</sub> glasses.



**Figure S2:** Powder X-ray diffractograms of  $(Na_2O)_{0.3}[(TeO_2)_x(GeO_2)_{1-x}]_{0.7}$  glasses. Asterisks, circles, and dashed vertical lines indicate diffraction bands attributable to crystalline phases found with help of the Qualx2 software[1] using the crystallography open database (COD).[2]



**Figure S3:** Comparison of powder X-ray diffractograms of  $(Na_2O)_{0.3}[(TeO_2)_x(GeO_2)_{1-x}]_{0.7}$  glasses with  $x = \{0.8; 1.0\}$ , recorded shoftly after preparation (2018) and two years later (2020). Visible diffration bands are attributable to  $Na_2Te_2O_5(H_2O)_2$  (see also Figure S2).



**Figure S4:** DSC curves of  $(A_2O)_{0.3}[(TeO_2)_x(GeO_2)_{1-x}]_{0.7}$  (A = Li, Na) glasses. The inset (top) shows exemplarily the extraction of characteristic temperatures  $T_x$  and  $T_g$  (indicated by asterisks).



**Figure S5:** Characteristic temperatures  $T_x$  and  $T_g$  of  $(A_2O)_{0.3}[(TeO_2)_x(GeO_2)_{1-x}]_{0.7}$  (A = Li, Na) glasses against glass composition *x*. Solid lines serve as guide to the eye and connect the values of endmember compositions x = 0 ((A<sub>2</sub>O)<sub>0.3</sub>(GeO<sub>2</sub>)<sub>0.7</sub>) and x = 1 ((A<sub>2</sub>O)<sub>0.3</sub>(TeO<sub>2</sub>)<sub>0.7</sub>).



**Figure S6:** Complex plane plot of impedance data of  $(A_2O)_{0.3}[(TeO_2)_x(GeO_2)_{1-x}]_{0.7}$  (A = Li,Na) glasses recorded at 180 °C. Red data points indicate a frequency of 10 kHz. The solid and dashed lines indicate least-squares fits to the data according to the semi-circle function  $y = -(y_0 + (r^2 - (x-x_0)^2)^{1/2})$ , where  $x_0$  and  $y_0$  represent offsets on the Z' and Z' axes respectively, and *r* represents the radius of the semi-circle. Data are divided by the geometrical factor 1/S (1 = sample thickness, S = area of the electrode), so the non-trivial zero of the fit function then corresponds to the real resistivity value, used to calculate the conductivity shown in the Arrhenius plots in Figure 1.

## References

[1] Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., Rizzi, R., QUALX2.0: a qualitative phase analysis software using the freely available database POW\_COD, *J. Appl. Cryst.* 48 (2015). 598-603.

[2] Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A., Crystallography Open Database – an open-access collection of crystal structures, *J. Appl. Cryst.* 42 (2009), 726-729.