

Quest for Sustainable all-solid-state Battery Components

Glass-to-Crystal Transition in the NASICON Glass-Ceramic System $Na_{1+x}AI_{x}M_{2-x}(PO_{4})_{3}$ (M = Ge, Ti)

<u>Henrik Bradtmüller¹, Adriana Marcela Nieto-Munoz², Jairo Felipe Ortiz-Mosquera², </u> Ana Candida Martins Rodrigues² and Hellmut Eckert^{1,3}

h.bradtmueller@uni-muenster.de

¹Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Germany ²Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, SP, Brazil ³Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP Brazil

Objectives

Recently, much effort has been devoted to the development of high-energy storage devices and all-solid-state batteries with improved cycling stability and operating safety compared to liquid electrolyte lithium-ion batteries.^[1,2] Crystalline compounds possessing the Na-superionic conductor (NASICON) structure are important solid electrolyte and separator materials in such systems.^[2] While Li-containing NASICON materials are have already been commercialized for this application, the present study explores analogous sodiumbearing materials. This work is motivated by the (compared to lithium) 500-fold atomic abundance of the element sodium, guaranteeing that large-scale efforts will be sustainable and attractive to national energy economies. While materials have been traditionally prepared via solid-state reactions ("sintering route"), preparations involving the crystallization of precursor glasses ("glass-ceramic route") have resulted in more homogeneous materials with controllable microstructures and morphologies. Therefore, in the present contribution we have analyzed glasses and glass-ceramics of composition $Na_{1+x}AI_xGe_{2-x}(PO_4)_3$ (NAGP) and $Na_{1+x}AI_xTi_{2-x}(PO_4)_3$ (NATP) (0.4 $\leq x \leq 1.0$) together with the aluminum free compositions (x = 0). In particular, we made extensive use of solid-state nuclear magnetic resonance (NMR) spectroscopy, which has been widely applied for the study of lithium-containing NASICON materials^[3-6] and a few related sodium-containing NASICON crystalline powders, to characterize the glass-to-crystal transition in the NAGP and NATP systems.

Glass-to-Crystal Transition

³¹P-MAS NMR

³¹P MAS NMR experiments show that P³ species, connected to Ge and AI in varying coordination states, dominate the glassy samples. Crystallization leads to an ordering of the local environments in a manner that the crystalline state P⁴ species with varying numbers of Ge and AI ligands subjected to a binomial distribution.

Glass

Structure Elucidation

XRD Analysis

X-ray powder diffraction (XRD) reveals a significant lattice expansion in the NAGP system upon aliovalent substitution of Ge by AI compared to the NATP system.

NAGP glass-ceramics

°⊂↓ 21.50 -(℃ 21.45

ģ

(a,

Lattice

NAGP

NATP

21.45

21.40

21.35

NATP glass-ceramics

→ V _Γ 1380

Even though NASICON glasses satisfy the $T_{a}/T_{f} < 0.6$ criterion for homogeneous crystallization, the profound structural diferences between the glasses and their isochemical crystals, regarding the local environments of both network former and network modifier species, suggest a heterogeneous nucleation mechanism.

Acknowledgements

This work was funded by FAPESP grant No. 2013-07793 vie the CEPID programme. H.B. also thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

¹ V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, *Energy Environ. Sci.* 4 (2011), 3243.¹ W. Fujita, K. Awaga, J. Chem. Soc. Chem. Commun. **1995**, 263, 739–740. ² D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chemie - Int. Ed. 54 (2015), 3432. ³ N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, V. Radha, M. Vithal, *J. Mater. Sci.* 46 (2011), 2821. ⁴ C. Schröder, J. Ren, A. C. M. Rodrigues, H. Eckert, J. Phys. Chem. C. 118 (2014), 9400. ⁵ H. Eckert, A.C.M. Rodrigues, Mater. Res. Soc. Bull., 42 (2017), 206.

⁶ Z. Liu, S. Venkatachalam, L. van Wüllen, Solid State Ionics 276 (2015), 47.

